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Abstract
Genetic alterations, including gene mutations, and chromosomal 
amplifications, deletions, inversions, and translocations, are hall-
marks of the molecular biology of cancer. These events lead to 
oncogene activation, formation of chimeric oncoproteins, and/
or inactivation of tumor suppressor genes. Such genetic changes 
contribute to the neoplastic transformation of cells, as well as 
the eventual acquisition by malignant cells of a more aggres-
sive biologic and clinical behavior. However, in recent years, it 
has become apparent that these genetic events are not the sole 
determinants of the biologic behavior of tumor cells. Indeed, it 
is becoming increasingly apparent that tumor cells with a given 
genotype exhibit a differential phenotype depending on the 
microenvironment in which they reside. Furthermore, extensive 
data have shown that derivative daughter cells of neoplastic, as 
well as normal cells, inherit changes in the patterns of gene ex-
pression that are not associated with changes in the primary DNA 
sequence but are instead related to changes in chromatin struc-
ture and its accessibility for transcriptional activity. These herita-
ble gene expression changes that are not associated with changes 
in the primary nucleotide sequence are referred to as epigenetic 
changes. This review provides an overview of the regulation of 
the “epigenome” in neoplastic cells, with particular emphasis on 
DNA methylation and histone acetylation as therapeutic targets 
for hematologic malignancies. (JNCCN 2009;7[Suppl 8]:S1–S12)

biologic behavior of tumor cells.3 Indeed, it is becom-
ing increasingly apparent that tumor cells with a given 
genotype exhibit a differential phenotype depending on 
the microenvironment in which they reside.4 Further-
more, an extensive body of data has shown that deriva-
tive daughter cells of neoplastic, as well as normal cells, 
inherit changes in the patterns of gene expression that 
are not associated with changes in the primary DNA se-
quence but instead are related to changes in chromatin 
structure and its accessibility for transcriptional activ-
ity.5,6 Such heritable gene expression changes that are 
not associated with changes in the primary nucleotide 
sequence are referred to as epigenetic changes.

This review provides an overview of the regulation 
of the “epigenome” in neoplastic cells, with particular 
emphasis on DNA methylation and histone acetylation 
as therapeutic targets for hematologic malignancies.

Role of Epigenetics in Human Neoplasias
The DNA inside the nucleus of both normal and malig-
nant cells is organized into nucleosomes, which are the 
basic functional units of chromatin. Each nucleosome 
corresponds to 147 base pairs of DNA wrapped around 
a multimeric complex of histones H2A, H2B, H3, and 
H4 (2 copies of each histone per nucleosome).7 Nu-
cleosomes are linked to each other by DNA sequences 
(approximately 160–240 base pairs in length), which 
interact with histone H1 and can be further organized 
to form more compact helical structures that deter-
mine the degree of packaging of the chromatin. The 
concept of epigenetic regulation of gene transcription 
was based on observations that covalent chemical post-
translational modifications of the tails of histone mol-
ecules lead to changes in gene transcription as a result of 
structural changes in the 3-dimensional conformation 
of chromatin.6 These posttranslational changes, which 

Genetic alterations, including gene mutations, and 
chromosomal amplifications, deletions, inversions, and 
translocations are hallmarks of the molecular biology 
of cancer.1,2 These events lead to oncogene activation, 
formation of chimeric oncoproteins, and/or inactiva-
tion of tumor suppressor genes. Such genetic changes 
contribute to the neoplastic transformation of cells, as 
well as the eventual acquisition by malignant cells of 
a more aggressive biologic and clinical behavior. How-
ever, in recent years, it has become apparent that these 
genetic events are not the sole determinants of the 
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different, and potentially overlapping, mechanisms. 
Global hypomethylation has been proposed to have a 
negative overall effect on structural stability of chro-
mosomal material because of increased aneuploidy 
(attributed to hypomethylation in centromeres),18,19 
increased mitotic recombination (which predisposes 
to loss of heterozygosity and chromosomal rearrange-
ments), and loss of normal imprinting patterns.20,21 
In contrast, increased methylation in promoter-
associated CpG islands is considered a key mecha-
nism for silencing of tumor suppressor genes, such 
as p2122,23 or Rb.24,25 In fact, there are data to suggest 
that in many tumor models the frequency of hyper-
methylation of CpG islands in promoter regions of 
tumor suppressor genes is similar to the frequency of 
deletions or inactivating mutations of these genes.5 
The precise mechanisms for hypermethylation of 
promoter region-associated CpG islands in tumor 
cells or for the apparent predilection of tumor sup-
pressor gene promoters for this hypermethylation are 
not completely understood.3

Among the diverse posttranslational histone 
modifications that can influence gene transcription, 
acetylation and methylation have been studied in 
the greatest detail. The acetylation status of histones 
is regulated by the functionally opposing activities of 
HDACs and HATs. The latter transfer acetyl groups 
from acetyl-CoA to lysine residues in the histone 
tail, while the former facilitate the removal of these 
groups. The hyperacetylated state of histones has his-
torically been thought to be associated with a struc-
turally open chromatin and active transcription of 
corresponding genes, whereas histone deacetylation 
has been associated with suppression of gene expres-
sion and/or heterochromatin formation.26,27 This has 
been attributed to the fact that increased acetylation 
of histones neutralizes the positive charge of their 
lysine residues, thereby attenuating the electrostatic 
interaction of the nucleosome histone core with the 
negatively charged DNA backbone. Furthermore, it 
has been proposed that acetylated histones constitute 
sites for docking of bromodomain-containing regula-
tory factors necessary for transcriptional activation.28 
However, the relationship between histone acetyla-
tion status and transcription of individual genes is 
more complex. The activation of gene transcription 
is determined by several different functionally oppos-
ing epigenetic events. For instance, the processes of 
DNA methylation and histone acetylation seemed 

include methylation, acetylation, phosphorylation, 
ubiquitination, and SUMOylation, modulate the ac-
cessibility of DNA to transcription factors and other 
regulators of gene expression.6 In addition, these 
posttranslational modifications of histones interact 
with another important component of epigenetic 
modification, namely, the methylation of DNA at 
CpG dinucleotide sites, to determine the state of 
transcriptional activity of corresponding genes.

In CpG dinucleotide sites, where a cytosine resi-
due precedes guanosine, the C5 position of the py-
rimidine ring of cytosine can receive a methyl group, 
donated by S-adenosyl methionine, in a biochemi-
cal reaction catalyzed by DNA methyltransferases. 
CpG dinucleotides are not uniformly distributed in 
the human genome. Instead, they appear to be over-
represented in the so-called CpG islands, which are 
relatively short DNA regions (0.5 kb to a few kb) 
that are frequently located near promoter sequences 
of different genes.8 Cytosine residues in CpG islands, 
particularly those present within promoter regions, 
are typically not methylated in nonmalignant cells, 
while CpG dinucleotides in downstream sequences 
within the body of the gene and in the 3′ untrans-
lated region are typically present in lower density 
compared with CpG islands, and are predominantly 
methylated in nonmalignant cells. The hypomethyl-
ation of the promoter region and the presence of CpG 
methylation in the body of the gene facilitate the re-
cruitment of transcription factors, transcriptional ac-
tivators, and histone acetyltransferases (HATs) in the 
promoter region, while methylcytosine-binding pro-
teins and histone deacetylases (HDACs) are recruit-
ed to the methylated CpG dinucleotides in the body 
of the gene. This pattern of differential recruitment 
of these factors is conducive to active transcription of 
the corresponding gene.5 Notable exceptions to this 
pattern for nonmalignant cells have been described 
in the context of gene imprinting and in genes with-
in the regions of X-chromosome inactivation.9,10 In 
contrast to the DNA methylation pattern observed 
in normal cells, malignant cells exhibit a reversal in 
the distribution of CpG methylation,11,12 which in-
volves 1) widespread hypomethylation in the body 
of genes, within intronic sequences, and within re-
petitive DNA sequences, and 2) hypermethylation 
in CpG islands within promoter regions.5,13–17

Both of these events are considered capable of 
contributing to the neoplastic phenotype through 
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to be functionally opposing, because DNA methyl-
transferases recruit HDACs to methylated CpG sites 
of gene promoters, further contributing to a tran-
scriptionally inactive chromatin state.29 Interest-
ingly, there are data to suggest that, in the context of 
this functionally opposing role of DNA methylation 
and histone acetylation, the former appears to play a 
functionally dominant role, which can keep the cor-
responding genes in a transcriptionally silent status, 
despite increased histone acetylation.14,30,31 Other 
posttranslational modifications of histones can influ-
ence the state of transcriptional activity of genes. For 
instance, methylation of histones can either activate 
or suppress gene transcription, depending on the 
particular site on the N-terminal histone tail, where 
methylation takes place. The methylation of lysine 
residues 9 and 27 of histone H3 (H3K9 and H2K27) 
is typically associated with suppression of transcrip-
tion, in contrast to the methylation of lysine 4 of 
histone H3 (H3K4), which is associated with tran-
scriptional activation.32,33 To further underscore the 
complexity of this regulatory system, acetylation of 
H3K9 facilitates the methylation of H3K4, espe-
cially in genes with unmethylated CpG islands.17,34 
Figure 1 illustrates epigenetic inactivation of tumor-
suppressor genes and agents that may be able to par-
tially restore this distorted epigenetic picture.35

A growing number of pathways and molecu-
lar mediators critical for tumor cell proliferation, 
survival, drug resistance, metastatic potential, and 
other aspects of tumor cell biology are regulated at 
an epigenetic level. Many studies have been able 
to validate a direct relationship between increased 
DNA methylation and transcriptional silencing 
of genes known to have a negative regulatory role 
on cell cycle progression (e.g., Rb, p14, p15, p16, 
p57, p73);13,36–42 proapoptotic signaling (caspase-8, 
DAPK1, TMS-1);43–47 growth factor signaling 
(SOCS1, SOCS3, CRBP1, RARbeta2);39,44,48–52 repair 
of DNA damage (Fanconi anemia-BRCA pathway 
members, GSTπ, hMLH1, O6MGMT);13,39,53–56 in-
hibition of angiogenesis (VHL, EFEMP1, BNIP3, 
BNIP3L, IGFBP3, and EGLN2);57–59 or inhibition 
of metastatic potential (TIMP3, E-cadherin).44,54,60 
In these cases, the transcriptional silencing appears 
to provide an advantage to the tumor cell by abro-
gating the expression and function of mediators that 
negatively affect the proliferative capacity, drug re-
sistance, and metastatic potential of the tumor cell. 

The main targets of DNA methylation in cancer 
cells appear to fall into 2 large categories: 1) tar-
gets of epigenetic silencing that seem to play a role 
in a broad spectrum of tumor neoplasias (e.g., p16, 
Rb),13,36–39,41,54,61,62 and 2) genes silenced in a tumor 
type-specific manner, reflecting putative tumor sup-
pressive roles in select tissues.5,14,15

Posttranslational modifications of histones also 
affect the expression and/or function of a pleiotropic 
spectrum of molecular pathways important for can-
cer cell biology. HATs and HDACs can regulate gene 
expression not only by affecting chromatin structure, 
but also by affecting the DNA binding and transcrip-
tional activity of key transcription factors, such as 
p53, STAT3, ETS, and RUNX1.63,64

Furthermore, histone methylation provides an 
additional level of regulation of gene expression 
through a complex system that involves methylation 
of arginine (either mono- or dimethylation) or lysine 
(mono-, di-, or trimethylation) residues. The meth-
ylation state of histones is regulated by the opposing 
action of histone methyltransferases and histone de-
methylases. Arginine methylation is typically associ-
ated with transcriptional activation, whereas lysine 
methylation can be associated with transcriptional 
repression (when the methylation involves residues 
H3K9, H3K27, and HK20) or conversely constitu-
tional activation (when the methylation involves 
residues H3K4, H3K36, and H3K79).65,66

Epigenetic Changes as Prognostic 
Markers
The significance of epigenetic changes for neoplastic 
cells of hematologic malignancies is underscored by 
2 observations: agents targeting epigenetic regulation 
have shown clinical activity for diverse hematologic 
malignancies; aberrations in epigenetic markers have 
been found to correlate with clinical outcome in sev-
eral clinical settings of patients with hematologic 
malignancies. Perhaps the most robust evidence for 
the prognostic significance of epigenetic changes in 
hematologic malignancies has come from the setting 
of diffuse large B-cell lymphoma, where hypometh-
ylation of the promoter region for the DNA repair 
enzyme O6MGMT67 has been associated with signifi-
cantly shorter progression-free and overall survival 
times among patients receiving cyclophosphamide-
based chemotherapy for this disease. This observation 
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Pharmacologic Modulators of 
Epigenetic Regulation as Therapeutics 
for Hematologic Neoplasias

Currently, DNA methyltransferase inhibitors and 
HDAC inhibitors constitute the 2 classes of epigen-
etic agents that are most advanced in terms of clinical 
applications. Indeed, members of these 2 classes have 
already been approved by the FDA for various indi-
cations in hematologic malignancies. Further studies 
may reveal whether these classes of agents may also 
have activity in the context of solid tumors.

is compatible with similar data pertaining to response 
of glioma to carmustine68 and other alkylating agents 
(alone or with radiation therapy).55,56,69,70 In the con-
text of leukemias, p15 methylation was shown to be 
an independent predictor of inferior disease-free sur-
vival in acute promyelocytic leukemia,71 while pa-
tients with acute lymphoblastic leukemia with a high-
er number of hypermethylated tumor suppressor genes 
have a worse prognosis.72 Lastly, patients with my-
eloma harboring hypermethylation of the promoter 
regions for p1644,73,74 or DAPK175 have been reported 
to have an unfavorable prognosis after treatment with 
conventional antimyeloma therapies.

Figure 1 Epigenetic inactivation of tumor-suppressor genes.35 In a normal cell, expression of the mRNA of a tumor-suppressor gene 
occurs in the context of an unmethylated promoter CpG island and histone modification, such as hyperacetylation and methylation 
of lysine 4 of histone H3. Gray cylinders indicate octamers of histones, consisting of histones H2A, H2B, H3, and H4. They form 
the nucleosomes, and the double strand of DNA is wrapped around them. A combination of selection and targeted disruption of the 
DNA methylation and histone-modifier proteins disrupts the epigenetic circumstances in the cancer cell. Epigenetic inactivation 
of tumor-suppressor genes is associated with dense CpG-island promoter hypermethylation and the appearance of repressive histone 
markers such as methylation of lysines 9 and 27 of histone H3. Epigenetic drugs can partially restore the distorted epigenetic picture 
by removing inactivation markers (e.g., DNA methylation) and inducing the presence of active markers (e.g., histone acetylation). 
Abbreviations: AC, acetylation; DNMTs, DNA methyltransferases; HATs, histone acetyltransferases; HDAC, histone deacetylase; 
HDMs, histone demethylases; HMTs, histone methyltransferases; MBDs, methyl-CpG–binding domain proteins; Met-K4, methyla-
tion of lysine 4; Met-K9, methylation of lysine 9; Met-K27, methylation of lysine 27; Sirt1, sirtuin 1; Swi/SNF, switching/sucrose 
nonfermenting chromatin-remodeling complex. 
From Esteller M. Epigenetics in cancer. N Engl J Med 2008;358:1148–1159. Copyright © 2008. Massachusetts Medical Society. All 
rights reserved.
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DNA Methyltransferase Inhibitors
Azacitidine (5-azacytidine) and decitabine (2′-deoxy-
5-azacytidine) are the 2 DNA methyltransferase in-
hibitors currently approved by the FDA. Other DNA 
methyltransferase inhibitors currently in develop-
ment include zebularine, SGI-110, and RG108. The 2 
FDA-approved DNA methyltransferase inhibitors, as 
well as several of the currently developed compounds 
in this class, are nucleoside analogs (one exception 
is the RG108 compound, which is an active site in-
hibitor). Azacitidine, the prototypical member of this 
drug class, was initially studied in the 1960s for its 
properties as a classical cytotoxic chemotherapeutic 
agent. Indeed, being an analog of cytosine, azaciti-
dine is incorporated into the DNA and, at high doses, 
inhibits DNA synthesis. However, it was noted that 
at lower doses (1–2 logs lower than the directly cyto-
toxic doses of the compound) azacitidine treatment 
is incorporated not only into the DNA during DNA 
synthesis,76 but in that context, azacitidine also func-
tions to inhibit DNA methyltransferase activity.

A phase III, international, randomized, open-label 
trial compared subcutaneous azacitidine treatment 
versus conventional care in patients with higher-risk 
myelodysplastic syndromes (MDS).77 Conventional 
care was defined as best supportive care, low-dose cy-
tarabine, or intensive chemotherapy, as selected by 
investigators before randomization. Median overall 
survival was 24.5 months for the azacitidine group 
versus 15.0 months for the conventional care group 
(hazard ratio, 0.58; 95% CI, 0.43–0.77; P = .0001). 
At last follow-up, 82 patients in the azacitidine group 
had died compared with 113 in the conventional care 
group. At 2 years, 50.8% of patients in the azacitidine 
group were alive compared with 26.2% in the con-
ventional care group (P < .0001).77 Subsequent stud-
ies of azacitidine and other DNA methyltransferase 
inhibitors have confirmed these observations and ex-
tended them to other clinical settings of MDS, such 
as studies showing that decitabine offers a survival 
advantage compared with intensive chemotherapy 
in patients with higher-risk MDS.78 Studies explor-
ing alternative dosing and schedules of administra-
tion,79,80 as well as combination regimens with other 
agents,81–83 have been performed or are ongoing. Fur-
thermore, the feasibility of stem cell transplant after 
treatment with DNA methyltransferase inhibitors has 
been documented.84

DNA methyltransferase inhibitors have also been 

tested in leukemias and myeloproliferative disorders, 
including combinations with imatinib in patients 
with chronic myeloid leukemia;85 combinations with 
HDAC inhibitors, such as valproic acid86,87 or phen-
ylbutyrate,81 in acute myeloid leukemia (AML); com-
binations with all-trans retinoic acid;87 and combina-
tions with hydroxyurea and gemtuzumab ozogamicin 
in patients with previously untreated non-M3 AML;82

as well as studies in patients with myelofibrosis88 or 
chronic myelomonocytic leukemia.89 The aggregate 
experience from these trials is that DNA methyltrans-
ferase inhibitors can be safely administered in combi-
nation with other antileukemic agents. While in the 
setting of MDS, DNA methyltransferase inhibitors 
are, as single agents, capable of improving the natural 
history of MDS, and have in fact become a standard of 
care for patients with higher-risk MDS,90 more stud-
ies are needed to evaluate whether the anti-leukemic 
clinical activity of combinations incorporating this 
drug class is superior to that of conventional regimens.

HDAC Inhibitors
The study of HDAC inhibitors in hematologic ma-
lignancies and solid tumors was preceded by early 
observations in the 1980s that proposed a link be-
tween the ability of sodium butyrate to induce cell 
differentiation in erythroleukemia cells91,92 and the 
compound’s ability to trigger hyperacetylation of 
histones.93–95 Sodium butyrate did not receive FDA 
approval, but anecdotal evidence of clinical response 
in a butyrate-treated patient with acute myelocytic 
leukemia96 provided impetus for further study of oth-
er short-chain fatty acids with HDAC inhibitory ac-
tivity (e.g., valproic acid). Furthermore, it provided 
a first level of supportive evidence for the develop-
ment of new classes of HDAC inhibitors, including 
hydroxamates, such as vorinostat (suberoylanilide 
hydroxamic acid), panobinostat (LBH589), belino-
stat, cyclic peptides (such as FK228, also known as 
depsipeptide or romidepsin), or benzamides.97

The Role of HDAC Inhibitors in Cutaneous and 
Peripheral T-Cell Lymphoma: T-cell lympho-
mas were among the first clinical settings in which 
HDAC inhibitors were shown to be active. In a phase 
I trial of depsipeptide (romidepsin) conducted at the 
National Cancer Institute, 3 patients with cutane-
ous T-cell lymphoma (CTCL) had a partial response, 
and 1 with peripheral T-cell lymphoma (PTCL) had 
a complete response.98 These observations provided 
the impetus for extensive clinical testing of romidep-
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daily for 5 days per week in 4-week cycles; or 200, 300, 
or 400 mg twice daily for 14 days in 3-week cycles) 
in patients with MM. In that trial, 13 patients (with 
a median of 3 lines of prior therapy) were evaluated. 
Treatment was continued until disease progression 
or intolerable toxicity was observed.105 Drug-related 
adverse events, which included fatigue, anorexia, de-
hydration, diarrhea, and nausea, were mostly grade 
2 or below. Among 10 evaluable patients, 1 case of 
minimal response and 9 cases of stable disease were 
observed. Maximum tolerated doses were not deter-
mined due to early study termination by the sponsor. 
Although these observations might seem to indicate 
only modest single-agent activity of vorinostat in ad-
vanced MM, it is notable that the schedule of admin-
istration in this MM-specific phase I study was twice-
daily. Clinical trials that led to vorinostat approval in 
CTCL showed that daily dosing is more active and 
better tolerated99 than twice-daily administration.

Given the preclinical observations regarding the 
anti-MM activity of the combination of vorinostat 
plus bortezomib, this combination was evaluated in 
clinical studies in advanced MM, including 2 separate 
multi-institutional phase I trials.106,107 Both studies 
confirmed clinical activity (with stable or decreasing 
M-protein in 13 of 16 and 17 of 17 patients, respec-
tively) despite the heavily pretreated patient popula-
tions, which included most patients whose disease was 
refractory to the previous therapy; had received single 
or double autologous stem cell transplantation; and 
had previously received thalidomide-, lenalidomide-, 
or bortezomib-based therapies, including patients who 
had relapsed or whose disease was refractory to mul-
tiple lines of bortezomib-based treatment. Ongoing 
studies in the MM field are further evaluating the role 
of this combination in patients with bortezomib-re-
fractory disease, whereas a randomized phase III trial is 
currently comparing vorinostat plus bortezomib versus 
bortezomib alone.

The preclinical and clinical observations regard-
ing vorinostat activity in MM triggered interest for 
studies of other members of the HDAC inhibitor 
class in this setting. For instance, other hydroxamic 
acid HDAC inhibitors, such as LAQ824108 and pan-
obinostat (LBH589),109 were studied preclinically, 
while clinical studies of panobinostat in combina-
tion with bortezomib are also underway. A related 
line of research has involved the development of 
HDAC6-selective inhibitors, such as tubacin.110 This 

sin and other HDAC inhibitors in patients with T-
cell lymphoma. In a phase II trial of oral vorinostat for 
refractory CTCL, 8 of 33 patients experienced partial 
response, including 7 with advanced disease and 4 
with Sézary syndrome, while the time-to-disease pro-
gression was 30 weeks. 99 The most common grade 3 or 
4 drug-related adverse events were thrombocytopenia 
and dehydration. These results solidified the notion 
that vorinostat was active in heavily pretreated CTCL 
patients and identified the 400-mg daily regimen 
as the one with the most favorable safety profile. A 
multicenter phase IIb trial of vorinostat in persistent, 
progressive, or treatment-refractory CTCL,100 en-
rolled 64 patients who had undergone at least 2 prior 
systemic therapies (with at least 1 of which included 
bexarotene, unless intolerable) and showed an overall 
response rate of 29.7% and a median time-to-disease 
progression of 4.9 months. The results of these stud-
ies99,100 provided the basis for FDA approval of vorino-
stat for treating cutaneous manifestations of CTCL in 
patients with progressive, persistent, or recurrent dis-
ease while undergoing or after 2 systemic therapies.101 
This effect of vorinostat on CTCL seems to be a class 
effect, as other HDAC inhibitors also seem to have 
clinical activity in that setting. For instance, panobi-
nostat (LBH589) has also been shown to be active in 
this patient population.102

HDAC Inhibitors in Multiple Myeloma: The study 
of HDAC inhibitors in multiple myeloma (MM) 
was informed by preclinical data that showed that 
the HDAC inhibitor vorinostat (suberoylanilide hy-
droxamic acid) induces a constellation of antiprolifer-
ative and/or proapoptotic molecular events, including 
downregulation of transcripts for members of growth 
factor receptor signaling cascades, antiapoptotic mol-
ecules (e.g., caspase inhibitors), oncogenic kinases, 
DNA synthesis/repair enzymes, and transcription fac-
tors implicated in MM pathophysiology.103,104 These 
pleiotropic molecular events are associated with the 
ability of HDAC inhibitors to exhibit potent antip-
roliferative/proapoptotic activity against human MM 
cells, overcome the protective effect that bone mar-
row stromal cells have on MM cells, and enhance the 
response of MM cells to other anti-MM agents, in-
cluding the proteasome inhibitor bortezomib.103,104

Based on these results and the favorable safety 
profile of oral administration of vorinostat in other 
disease settings, a phase I trial evaluated the safety and 
efficacy of oral vorinostat (200, 250, or 300 mg twice 
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compound inhibits the tubulin deacetylation medi-
ated by HDAC6. This cytoplasmic deacetylase helps 
transport misfolded proteins to the aggresome. Single-
agent tubacin has limited in vitro anti-MM activity, 
but enhances the anti-MM activity of bortezomib.110 
This effect is at least partly related to inhibition of 
aggresome function as a result of HDAC6 inhibition. 
Therefore, in contrast to hydroxamic acid inhibitors 
(vorinostat, LAQ824), tubacin primarily serves as a 
“cytosolic deacetylase” rather than a “nuclear deacet-
ylase.”111 Therefore, despite some overlap between 
these 2 groups of functional activities (e.g., through 
LBH589-mediated inhibition of cytoplasmic deacety-
lation),109,112 it is conceivable that tubacin and other 
HDAC6-selective inhibitors primarily target cytoplas-
mic protein homeostasis, rather than functioning as 
classical examples of therapeutic targeting of epigen-
etic regulation at the level of chromatin remodeling.
HDAC Inhibitors in Other Hematologic Malignan-
cies and MDS: HDAC inhibitors have been tested in 
clinical trials for patients with AML,113–115 chronic my-
eloid leukemia,113 acute lymphoblastic leukemia,113,115 
chronic lymphocytic leukemia,113,116 MDS,113,117 and in 
lymphomas other than CTCL/PTCL.118 These studies 
have shown that HDAC inhibitors do not generally 
exhibit substantial single-agent clinical activity (i.e., 
not to the level observed in CTCL/PTCL). Of note, 
several of these studies showed that HDAC inhibitor 
administration was associated with inhibition of the 
intended targets, as evidenced by hyperacetylation of 
histones,113 whereas in some cases differentiation or 
apoptosis of leukemic cells was also observed.116 The 
different pattern of responses to HDAC inhibition 
in CTCL/PTCL versus other hematologic malignan-
cies, remains to be explained at the molecular level. 
It is conceivable that within each classically defined 
group of hematologic malignancies there are specific 
molecularly defined subtypes that are highly respon-
sive to HDAC inhibition. Clinical trials with small 
numbers of patients may not be able to detect these 
specific molecularly defined subtypes. Modifications of 
dose/schedule, as well as rational design of combina-
tion regimens, similar to the experience in the MM 
field, could conceivably extend the spectrum of activ-
ity of HDAC inhibitors.119,120

Nonchromatin-Related Sequelae of HDAC Inhibi-
tors: HDAC inhibitors are a prime example of a ther-
apeutic strategy that targets the aberrant epigenome 
of neoplastic cells. However, the molecular sequelae 

of HDAC inhibition extend well beyond the modu-
lation of histone acetylation. In fact, there is now 
extensive evidence that agents such as vorinostat, 
panobinostat, and other HDAC inhibitors inhibit 
acetylation of a diverse range of nonhistone proteins 
implicated in proliferation, survival, and drug resis-
tance of neoplastic cells (Figure 2).121

For instance, the function of HSP90,122 HIF-
1a,123 STAT3,124 p53,125,126 NF-kappaB subunits,127 and 
steroid hormone receptors128–130 is regulated by their 
acetylation status and is therefore influenced by the 
activity of HDACs. Consequently, HDAC inhibitors 
can mediate their antitumor effects through not only 
modulation of the histone code but also modifications 
in the activity of signaling cascades, the components 
of which are regulated by HDAC activity. Therefore, 
the term deacetylase inhibitors perhaps more accurately 
describes the properties of this drug class.

Current Challenges and Future Directions
A fundamental reason why targeting the epigenome 
represents an attractive anticancer strategy for di-
verse neoplasias is the pleiotropic range of molecular 
sequelae triggered by these therapies. Specifically, it 
is hoped that such strategies will be able to counter-
act the pronounced genetic complexity and hetero-
geneity of neoplastic cells. This appeal is further en-
hanced by the increasing number of “druggable” or 
potentially “druggable” therapeutic targets involved 
in the regulation of the epigenome in cancer cells. 
Although DNA methyltransferase inhibitors and 
HDAC inhibitors are already FDA approved for treat-
ment of different types of neoplasias, mostly in the 
field of hematologic malignancies, other potentially 
druggable targets, including HAT or methyltransfer-
ase inhibitors, have also emerged in recent years.

However, a fundamental concern related to the 
pleiotropic nature of epigenetic therapies for cancer 
is that their molecular sequelae may not only occa-
sionally include the derepression of tumor suppressor 
genes and/or inactivation of oncogenic transcripts, 
but also may involve upregulation of some genes 
that could promote cell survival.3 One notable ex-
ample of this concern involves the observation that 
ABC transporter genes (e.g., MDR1-P glycoprotein, 
ABCG2) are often transcriptionally activated in dif-
ferent types of tumor cells after exposure to HDAC 
inhibitors.131–136 This raises concerns about potential 
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combinations of this drug class with conventional cy-
totoxic chemotherapy. Another example is the obser-
vation that, in biopsy specimens from 5-azacitidine-
treated patients with Epstein-Barr virus-associated 
tumors, significant demethylation was detected in 
all latent and lytic Epstein-Barr virus promoters ex-
amined within 72 hours of the conclusion of the last 
infusion of the first cycle of therapy, compared with 
pretreatment specimens.137 This experience, com-
bined with anecdotal immunohistochemical evidence 
regarding activation of previously silent viral antigen 
expression, as well as case reports of Epstein-Barr vi-
rus or hepatitis B virus reactivation in patients treated 
with romidepsin,138 suggests that more work may be 
necessary to exclude safety issues that may be caused 
by reactivation of latent viral infections.

Modifications of dose/schedule, as well as rational 
design of combination regimens are important strate-
gies that can help expand the spectrum of activity of 
HDAC inhibitors and other epigenetic therapies.119,120 
Combining these therapies with other existing drug 
classes requires careful study to avoid antagonistic ef-
fects that may be mediated by some of the many mo-
lecular sequelae triggered by pharmacologic modula-
tors of epigenetic regulation of gene expression. This 
has been proposed as one of the reasons why it is im-
portant to develop epigenetic therapies with a higher 
degree of specificity towards individual target genes, 
as opposed to the currently available epigenetic thera-
pies, the activity of which is considered to involve a 
more ubiquitous effect on the epigenome.
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1. Which of the following properly categorizes the 
DNA methylation pattern in malignant cells?
a. Widespread hypomethylation in the body of 

genes
b. Hypomethylation in CpG islands within the 

promoter regions
c. Hypermethylation within intronic sequences 

and within repetitive DNA sequences
d. None of the above

2. All of the following statements regarding epigenetics 
and gene transcription are true except:
a. The activation of gene transcription is 

determined by several different functionally 
opposing epigenetic events

b. Methylation of histones can either activate or 
suppress gene transcription

c. The processes of DNA methylation and histone 
acetylation appear to be functionally similar and 
complementary

d. None of the above

3. Which of the following statements regarding the 
use of azacitidine and other DNA methyltransferase 
inhibitors in hematologic malignancies is true?
a. Patients with higher risk myelodysplastic 

syndrome treated with decitabine had similar 
survival when compared with intensive 
chemotherapy

b. The feasibility of stem cell transplant after 
treatment with DNA methyltransferase 
inhibitors has been documented

c. DNA methyltransferase inhibitors are not a 
standard of care for patients with higher risk 
myelodysplastic syndrome

d. All of the above

4. Which of the following statements most accurately 
describes the action of HDAC inhibitors on multiple 
myeloma cells?
a. Exhibit potent antiproliferative, pro-apoptotic 

activity against multiple myeloma (MM) cells
b. Overcome the protective effect that bone 

marrow stromal cells have on MM cells
c. Enhance the response of MM cells to other anti-

MM agents
d. All of the above

5. All of the following statements regarding the use of 
HDAC inhibitors in hematologic malignancies are 
true except:
a. Studies have shown that HDAC inhibitors 

generally exhibit substantial single-agent 
clinical activity

b. HDAC inhibitors inhibit acetylation of a 
diverse range of nonhistone proteins implicated 
in proliferation, survival, and drug resistance of 
neoplastic cells

c. HDAC6-selective inhibitors primarily target 
cytoplasmic protein homeostasis

d. All of the above

Post-test Please circle the correct answer on the enclosed answer sheet.
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Post-Test Answer Sheet
Please circle one answer per question. A score of at least 70% on the post-test is required.

 1. a b c d  4. a b c d

 2. a b c d  5. a b c d

 3. a b c d

The activity content helped me to achieve the following objectives:
(1 = Strongly disagree; 3 = Not sure; 5 = Strongly agree)

Describe the role of epigenetics in the development and progression of hematologic malignancies

 1 2 3 4 5

Discuss DNA methylation and histone deacetylation and the role of therapies in targeting these pathways

 1 2 3 4 5

Review the latest data on the use of epigenetic therapies to treat hematologic malignancies, including treat-
ment-related adverse events

 1 2 3 4 5

Please indicate the extent to which you agree or disagree with the following statements:

You were satisfied with the overall quality of this activity.

 Strongly agree Agree Undecided Disagree Strongly disagree

Participation in this activity changed your knowledge/attitudes.

 Strongly agree Agree Undecided Disagree Strongly disagree

You will make a change in your practice as s result of participation in this activity.

 Strongly agree Agree Undecided Disagree Strongly disagree

The activity presented scientifically rigorous, unbiased, and balanced information.

 Strongly agree Agree Undecided Disagree Strongly disagree

Individual presentations were free of commercial bias.

 Strongly agree Agree Undecided Disagree Strongly disagree

Please circle the correct answer below.
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