Gene Silencing: Another Mechanism of Resistance?

1Department of internal Medicine, University of South Florida, 2H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA. Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, University of California San Diego Moores Cancer Center, La Jolla, CA, USA. ImmunityBio LLC, Santa Cruz, CA, USA. 3NantHealth, Culver City, CA, USA

ABSTRACT

Abstract

METHODS

- Next-generation sequencing (NGS) is an important tool in clinical oncology as it enables personalized cancer treatment.
- Not all patients respond to therapies selected based on sequence information, and NGS alone has not revealed the mechanism(s) underlying such resistance.
- RNAseq identifies which genes are expressed and can stratify the expression of these genes.
- Combining NGS with RNAseq allows for a more comprehensive approach to gene mutation-expression pattern recognition.

RESULTS

- Demographics overview for cohort (N=1879)
- Number of non-somatic variants
- Percentage of non-somatic variants across hotspot genes

CONCLUSIONS

- ~52% (985/1879) of patients have at least 1 rare SNP in the 50-gene panel that could be falsely reported as somatic.
- 66% (931/1417) of paired DNA/RNAseq patients have at least 1 true somatic SNV in the panel.
- 85% (1856/2190) were expressed in RNAseq.
- ~15% of mutations found in NGS are not expressed in the RNA level.
- Combining NGS with RNAseq offers insights into why certain patients may not respond to NGS-driven targeted treatments.